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What’s that !?What’s that !?

l Shape optimization

l Optimal sizing (thickness)

l Structural Mechanics
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CooperationCooperation

l ENGEL-Group, Schwertberg(Austria),         
Guelph (Canada), York (USA) 

 (2D-optimization, thickness- + shape optimization)

l SFB 013,  Univ. Linz 
 (FWF, federal province OÖ, city Linz)
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ContentsContents

l Shape optimization of a machine frame

l Optimal sizing                 - “ -

lMathematical abstractions

l Gradient calculation and Geometry
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Injection moulding machineInjection moulding machine

l Production of
– plastic pieces and tools
– high precision (3 gram, precision 1/100 mm)
– 30 work pieces per minute

l Clumping force to 4000 kN (~400 t)
l Mass to 25 tons
l Length to 3 meter
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Would you like to try it ?Would you like to try it ?

l 150 tons clumping force per wing

BMW,  130 km/h
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Objectives of the project Objectives of the project 

lMass reduction
l Shortening of development cycle

l Application of advanced math. 
techniques on practical problems

l Development of new
optimization strategies
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Geometry and constraintsGeometry and constraints
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Original and optimized shapeOriginal and optimized shape
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Results of 2D shape optimizationResults of 2D shape optimization
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Choice of model Choice of model 
for cast iron framesfor cast iron frames

2D
low arithm. costs
special geometry

3D
high costs

exact model

2D + thickness = 2 1/2D
low arithm.  costs
nearly a 3D-model
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2 1/2D : optimal sizing2 1/2D : optimal sizing

l Sheet metal: discrete
thickness optimization

– a few parameters

l Cast iron: continuous
thickness optimization
– (arbitrary) many parameters

Intelligent Optimization
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Optimal sizing :no holeOptimal sizing :no hole
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Optimal sizing: 399 parameterOptimal sizing: 399 parameter
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Optimal sizing: 1078 parameterOptimal sizing: 1078 parameter
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Optimal sizingOptimal sizing
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Shape optimizationShape optimization
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Results for more design parameters Results for more design parameters 

Pure AD Hybrid Hybrid Hybrid

# param.
# d.o.f.

449
7.518

449
7.518

449
29.402

1078
9.028

File size
(tracing)

953 MB 32 MB 129 MB 78 MB

#iterations
CPU time

800
38,5 h

800
3,8 h

800
14,1 h

2.200
105,1 h

T_optimizer
T_gradient
T_function

 4,0 h
 18,0 h
 16,5 h

 1,93 h
 0,54 h
 1,29 h

 2,64 h
 3,35 h
 8,13 h

90,3 h
3,9 h
9,8 h
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Optimal Sizing: Future WorkOptimal Sizing: Future Work

l Optimal sizing as initial guess for shape 
optimization

l Reduce #design parameters
l Use of B-splines in optimal sizing to reduce 

number of design variables



25

Comparison Comparison 

Finite
Differences

Adjoint
Method

Automatic
Diff.

Design
parameters

Only a few Adjustable
to nr. of
param.

many

Functional Very
complex

Rather
simple

Moderate
complex

Flexibility high low high

Iterative
solvers

yes yes no

CPU-time Very high low moderate
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Optimal sizing :24 parametersOptimal sizing :24 parameters
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Results for 24 design parameters Results for 24 design parameters 

Finite
Differences

Pure AD Hybrid
Method

# param.
# d.o.f.

24
16.690

24
16.690

24
16.690

#iterations
#function

83
19.752

100
315

100
236

CPU time 12,6 h 8,4 h 0,4 h

T_optimizer
T_gradient
T_function

 0,01h
 12,40 h

 0,23 h

 0,03 h
 6,00 h
 2,36 h

 0,01 h
 0,18 h
 0,20 h
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Conclusions Conclusions –– part Ipart I

l Flexible method for optimal sizing
l Objectives and constraints of moderate complexity
l Iterative solvers for state equation
l Huge evaluation graphs are avoided
l Optimal sizing as initial guess for shape 

optimization
l Use of B-splines in optimal sizing to reduce 

number of design variables
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Mathematical descriptionMathematical description

lMinimize a functional f

l under the given constraints
l solving as direct problem the     

plane stress state
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minimum)),(u( →DD vvf
0=∇f
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ConstraintsConstraints

l Besides an admissible geometry

l and ???? 
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FunctionalFunctional

l Barrier functions
l weights         : criteria for engineer
l below barrier of angle: 
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Optimization algorithmOptimization algorithm

l Nonlinear box constraints
l continuous subproblems

l Quasinewton method using
l BFGS-Update
l active index set strategy )(1

DfDD fH υυυ ∇⋅−← −

0=∇f
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Gradient of functionalGradient of functional

lWhen minimizing a functional f

l we need derivative

l and finally
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by finite differencesby finite differences

l with

l requires                solves of direct 
problem per step in optimization
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Direct methodDirect method

l results in derivatives of functional

l still         direct solves needed
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Adjoint method I Adjoint method I 

l The substitution 

l requires solving  of  

l adjoint problem
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Adjoint method II Adjoint method II 

l Therefore  

l requires solution of only     direct 

problem
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Adjoint method III Adjoint method III 

lMatrix derivatives 

l Optimal sizing:          easy, 

l Shape optimization:                             

coding for 
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Automatic Differentiation Automatic Differentiation 

l Calculate            via a routine derived 

from the code for calculating  

l ADOL-C [A. Griewank, Dresden]               
(runtime generation of                               

evaluation graph)

idv
df

f
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Hybrid Method (AD + adjoint) Hybrid Method (AD + adjoint) 
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Shape Optimization - Gradient

1) Take a set of designparameters

2) Generate the geometrical shape

3) Create a mesh for the current shape

4) Calculate the solution on the current mesh

Design functional evaluation means:

5) Evaluate the objective
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Evaluating the functional

1) Parameters

2) Shape

3) Mesh

4) Solution
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Evaluating the functional

1) Parameters

2) Shape

3) Mesh

4) Solution
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Evaluating the functional

1) Parameters

2) Shape

3) Mesh

4) Solution
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Evaluating the functional

1) Parameters

2) Shape

3) Mesh

4) Solution
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More about derivatives

The functional depends on the displacements...
...for example by angular constraintsangular constraints...

...but there are also dependencies
on the design parameters.

u
f

∂
∂



47

parameter
boundary

boundary
mesh
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Calculating the derivative

So what we really get when calculating the derivative
of K looks actually like that (written in a very crude,
but intuitive way...):

Though mathematically simple, this gets
rather complicated to implement (eg. Changing
a radius changes two tangential points and
therefore the two adjacient straight lines)
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Calculating the derivative

So what we really get when calculating the derivative
of K looks actually like that (written in a very crude,
but intuitive way...):

This means differentiating the solution of the linear
elastic subproblem by the dirichlet boundary values.
In a direct approach this requires the solution of one
field problem per parameter.
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Calculating the derivative

So what we really get when calculating the derivative
of K looks actually like that (written in a very crude,
but intuitive way...):

Finally this can be reduced to differentiating the
element matrices with respect to their respective
cornerpoints, which is fairly uncomplicated.
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A closer look at K

∑ ⋅⋅=
Elements

ee
T

e CKCK

The Stiffness Matrix K is usually calculated as 
the sum of all Element Stiffness Matrices.

These, of course, depend on the corner points of
their respective element.

As these are part of the mesh,
K depends on the mesh.
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The mesh mapping I

The mesh naturally depends on the outer shape.

But generating a new mesh for each outer shape
leads to serious problems:

• Similar shapes may lead to locally completely
different meshes, the mapping is not continuous,
and therefore of course not differentiable.

• Mesh generation is time consuming.
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The mesh mapping II

A better idea is to deform the mesh in a way that it
fits into the new outer shape. A first approach takes
two steps:

1) Map surface nodes to
the new outer shape

2) Use smoothing algorithm
to improve mesh (eg.Jacobi)



53

The mesh mapping II

A better idea is to deform the mesh in a way that it
fits into the new outer shape. A first approach takes
two steps:

1) Map surface nodes to
the new outer shape

2) Use smoothing algorithm
to improve mesh (eg.Jacobi)

Problem: The mapping is differentiable, but it takes
many smoothing steps to obtain a reasonable mesh.
Hard to get rid of overlapping elements!
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The mesh mapping III

Fast

It is possible to use highly advanced solution strategies
for the linear FEM system involved. The computation
time no longer depends on the degree of deformation
(as was the case for the Jacobi smoother)

Finally a good (and also very intuitive) approach is
to solve an elastic subproblem for the mesh.

This strategy is:



55

The mesh mapping III

Fast - Stable

The quality of the resulting mesh is usually very good.
This has a direct influence on the stability and speed
of the FEM calculations needed for the objective (as
they are calculated on this mesh).

Finally a good (and also very intuitive) approach is
to solve an elastic subproblem for the mesh.

This strategy is:
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The mesh mapping III

Fast - Stable - Flexible

There are a number of rather easy approaches to
further improve the quality of the resulting mesh (eg.
increasing the stiffness of small mesh elements and thus
keeping them from overlapping). The parameters of the
elastic problem offer a variety of possibilities.

Finally a good (and also very intuitive) approach is
to solve an elastic subproblem for the mesh.

This strategy is:
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The mesh mapping III

Fast - Stable - Flexible - Differentiable

The solution (displacement field) of the linear elastic
problem depends differentiably on the dirichlet
boundary conditions. Therefore the mapping from outer
shape to resulting mesh is differentiable as well.

Finally a good (and also very intuitive) approach is
to solve an elastic subproblem for the mesh.

This strategy is:

Movie !!Movie !!
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The mesh mapping III

Fast - Stable - Flexible - Differentiable

The solution (displacement field) of the linear elastic
problem depends differentiably on the dirichlet
boundary conditions. Therefore the mapping from outer
shape to resulting mesh is differentiable as well.

Finally a good (and also very intuitive) approach is
to solve an elastic subproblem for the mesh.

This strategy is:
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The shape mapping

The first thing one has to do is to map the design
parameters to the outer shape of the geometry. The
mathematical complexity of this is (for the simple
approach using only straight lines and circular
boundary elements) low, but the implementation
can become very tricky.
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Summary: Shape Optimizaion

Mesh deformation and especially mesh deformation
with linear elasticity algorithms highly improve
speed and stability of shape optimization.

This will be especially important for future full 3D
applications (enormous increase of elements).

Furthermore it would be useful to implement a more
general approach to shape description (splines...)
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Optimal Sizing Optimal Sizing –– smooth thickness smooth thickness 

lMatrix derivatives 

l Thickness distribution function
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BB--Spline Spline surfacesurface

l B-splines
– Used in CAD-systems
– Tensor product mesh
– Local (cubic) Bezier-functions

l Tensor product to form 2D-surface
– Smooth 2D-surface
– Rectangular domain
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BB--Spline Spline surface IIsurface II

l Tensor product
– Non-trivial domain??

l Trigger surface
– More Bezier-coeff.
– Than design variables
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BB--Spline Spline rectangle rectangle 
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BB--Spline Spline rectangle (42 d.v.)rectangle (42 d.v.)

•19 Iterations
•35 sec.
•59.1% reduction
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BB--Spline Spline rectangle (204 d.v.)rectangle (204 d.v.)

•48 Iterations
•11.5 min.
•60.6% reduction
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BB--Spline Spline CC--frame (451 d.v.)frame (451 d.v.)
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BB--Spline Spline CC--frame (451 d.v.)frame (451 d.v.)

•408 Iterations
•5h 17min.
•33.8% reduction
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Cont. vs. discrete thickness Cont. vs. discrete thickness 

•451 design variables
•408 iterations
•5h 17min.

•1078 design variables
•2200 iterations
•105h
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Optimization: Dreams?Optimization: Dreams?

l One fast, adaptive and autom. optimization code 
for 
– shape optimization
– optimal sizing
– (topology optimization)

l Requires competences in
– optimization
– computational geometry,mesh handling
– finite elements
– computer science


